In mathematics, physics, and engineering, spatial frequency is a characteristic of any structure that is periodic across position in space. The spatial frequency is a measure of how often sinusoidal components (as determined by the Fourier transform) of the structure repeat per unit of distance. The SI unit of spatial frequency is cycles per meter (m). In image-processing applications, spatial frequency is often expressed in units of cycles per millimeter (mm) or equivalently line pairs per mm.
A Fourier transform (FT) is a mathematical transform that decomposes functions depending on space or time into functions depending on spatial frequency or temporal frequency. That process is also called analysis. An example application would be decomposing the waveform of a musical chord into terms of the intensity of its constituent pitches. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time.
The Fourier transform of a function is a complex-valued function representing the complex sinusoids that comprise the original function. For each frequency, the magnitude (absolute value) of the complex value represents the amplitude of a constituent complex sinusoid with that frequency, and the argument of the complex value represents that complex sinusoid's phase offset. If a frequency is not present, the transform has a value of 0 for that frequency. The Fourier transform is not limited to functions of time, but the domain of the original function is commonly referred to as the time domain. The Fourier inversion theorem provides a synthesis process that recreates the original function from its frequency domain representation.